Numerical Investigation of Temperature Distribution in an Eroded Bend Pipe and Prediction of Erosion Reduced Thickness

نویسندگان

  • Hongjun Zhu
  • Guang Feng
  • Qijun Wang
چکیده

Accurate prediction of erosion thickness is essential for pipe engineering. The objective of the present paper is to study the temperature distribution in an eroded bend pipe and find a new method to predict the erosion reduced thickness. Computational fluid dynamic (CFD) simulations with FLUENT software are carried out to investigate the temperature field. And effects of oil inlet rate, oil inlet temperature, and erosion reduced thickness are examined. The presence of erosion pit brings about the obvious fluctuation of temperature drop along the extrados of bend. And the minimum temperature drop presents at the most severe erosion point. Small inlet temperature or large inlet velocity can lead to small temperature drop, while shallow erosion pit causes great temperature drop. The dimensionless minimum temperature drop is analyzed and the fitting formula is obtained. Using the formula we can calculate the erosion reduced thickness, which is only needed to monitor the outer surface temperature of bend pipe. This new method can provide useful guidance for pipeline monitoring and replacement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Semi-Elliptical Axial Crack in Pipe Bend Using XFEM

In this work, XFEM is employed to obtain the stress intensity factors (SIFs) of a semi elliptical part through thickness axial crack. In XFEM, additional functions are employed to enrich the displacement approximation using partition of unity approach. Level set functions are approximated using higher order shape functions in the crack front elements to ensure the accurate modeling of the crack...

متن کامل

Numerical Investigation of Pressure Drop and Erosion Wear by Computational Fluid Dynamics Simulation

The modernization of computer technology and commercial computational fluid dynamic (CFD) simulation has given better detailed results as compared to experimental investigation techniques. CFD techniques are widely used in different field due to its flexibility and performance. Evaluation of pipeline erosion is complex phenomenon to solve by numerical arithmetic technique, whereas CFD simulatio...

متن کامل

Prediction of kordan river geometric changes in the meandering Range

Predictions of total and even partial changes in rivers patterns are as the most essential issues related to rivers geomorphology. In this regarding, a lot of researches have been done by geomorphologists. This research has explored Kordan River aqueduct morphology changes in bights areas of Afkaneh cone surface. Kordan river is the one which has been affected by various factors and has changed...

متن کامل

Numerical Investigation of Turbulent Mass Transfer in a 90° Bend

This paper presents a numerical study of local mass transfer coefficients in a 90° bend using the RNG version of k–e model to include the influence of curvature on the turbulent transport. Simulations were performed for flow through a 90°, 3-D bend for Reynolds numbers of 13500, 90000, and 390000, Schmidt numbers of 2.53 and 700 and curvature ratios of 1.5, 2, and 2.5. The differences betwe...

متن کامل

Numerical Investigation of the Influence of Sand Particle Concentration on Long Radius Elbow Erosion for Liquid-Solid Flow

Erosion caused by sand transportation in flow changing devices is a serious concern in the hydrocarbon and mineral processing industry, which entail to failure and malfunction of flow devices. In this study, computational fluid dynamics (CFD) with discrete phase models (DPM) were employed for analysis of carbon steel long radius 90-Degree elbow erosion due to the sand concentration of 2, 5 and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014